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We present a brief historical introduction to the topic of Bell’s theorem. Next we present
the surprising features of the three-particle Greenberger–Horne–Zeilinger (GHZ) states.
Finally we shall present a method of analysis of the GHZ correlations, which is based on
a numerical approach, which is effectively equivalent to the full set of Bell inequalities
for correlation functions for the given problem. The aim of our numerical approach is to
answer the following question: Do additional possible local settings lead for the GHZ
states to more pronounced violation of local realism (measured by the resistance of the
quantum nature of the correlations with respect to “white” noise admixtures)?

1. INTRODUCTION: THE EARLY HISTORY OF THE PROBLEM

In the Introduction part of this paper we give a picture to the readers, especially
the young ones, of the years when the termquantum informationwas not yet
invented; however some basic research, that later gave birth to this new branch of
physics, already began.

In 1964, Bell (1964) demonstrated that no local and realistic (that is classical
relativistic) theory could ever agree with all predictions of quantum mechanics.
His theorem showed that the idea of Einstein,et al. (1935) (EPR) of completing
quantum mechanics, so that the resulting theory would be deterministic, is im-
possible. The theorem of Bell raises the following profound question: Can one
model natural phenomena with a local relativistic theory? Moreover, the theorem
provided a blueprint for an experimental test of this problem.

The consequences of the Bell theorem are so dramatic, so that experiments
were needed. But there were two problems. The first one was that the original
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4 To whom correspondence should be addressed at Faculty of Science, National University of
Singapore, Singapore 117542; e-mail: zukowski@merlin.ap.univie.ac.at

1023

0020-7748/03/0500-1023/0C© 2003 Plenum Publishing Corporation



P1: IZO

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468233 August 25, 2003 20:24 Style file version May 30th, 2002

1024 Kaszlikowski andŻukowski

Bell’s inequality required from the quantum two-particle system to possess perfect
correlations. This is possible in theory, and indeed such entangled two-particle
states exit in the Hilbert Space, however in the laboratory this is impossible. Simply
in every experiment some noise is inevitable. The second problem was to find a
source of entangled states that could give rise to observable quantum effects, that
could be used in a Bell test. Both problems were solved in the trail-blazing paper
by Clauseret al. (1969), the famous CHSH paper. A new type of Bell inequality
was proposed, which did not require the prefect correlations. It gives a bound of
correlations describable by local realistic theories. But this is not all. The authors
noticed that the two photon cascades in calcium result in emissions of pairs of
photons with entangled polarizations, i.e., a source for the pairs of entangled
particles needed for a test of Bell’s inequality (now rather the CHSH one) was
found, and the two photon emissions, already an interesting phenomenon, were
shown to be a very exotic effect in this case. Had this effect been known to Einstein
and his colleagues, most probably the EPR paper would have been completely
different. Since now a lot of experimental and theoretical physics is devoted to
studying entangled states (usually in the form of entagled polarizations), more,
even a whole new branch of physics emerged (quantum information) which tries
to understand and exploit as a resource entanglement, this pinpointing by CHSH of
the first controllable source of entanglement deserves to be called a great discovery.
Yes, earlier entangled states were present in both theory and experiment but their
drastically nonclassical properties were never observed directly. The new source
enabled precisely this.

In few years time the actual experiment was performed by Freedman and
Clauser (1972). To the amazement of many, Bell’s inequalities were violated by
a natural phenomenon observed in the lab. The prediction of the existence of
entangled states of light was experimentally confirmed.

Another important step was the paper by Clauser and Horne (1974) in which
they derived yet another Bell-type inequality, now customarily called the CH one.
This inequality has several very important features. It is testable (like the CHSH
one), it implies the CHSH one (but the CHSH does not imply the CH one), and is
perfect for the analysis of the threshold parameters required for a “loophole-free”
Bell test.

The dramatic consequences of Bell’s theorem, and the falsification of local
realism in the experiments of Clauser, caused a reaction in camp of researchers who
were sceptical about the universal validity or completeness of quantum theory. This
reaction resulted in many papers in which the above-mentioned “loopholes,” i.e.,
imperfections of the Freedman–Clauser test of Bell inequalities, were studied, and
which according to their authors could invalidate the experiment as a falsification
of local realism.

Aspectet al.(1982) designed and performed Bell experiments aimed at clos-
ing on of the loopholes. The same calcium cascade was the source, but much more
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effective pumping (by lasers) was used, and therefore the statistics were now much
better. But especially important was the experiment in which the polarizations to be
measured at two faraway detection stations were set effectively during the flight of
the photons. This guaranteed that the measurement setting at side A was absolutely
unknown at side B at the moment of the detection of the photon (and vice versa).
Thus any spooky theory that could “explain” the quantum correlations via a local
and realistic model, employing the “loophole” of the Clauser experiment (namely
fixed polarizer settings throughout the each experimental run) was closed. In this
way it was for the first time experimentally established that realistic theories of
nature must be necessarily nonlocal. This was the most important loophole to be
closed. Other loopholes are associated only with imperfections in the measuring
devices (like detector efficiency). However since the quantum predictions are so
well reproduced already in an imperfect experiment, why should we expect some
deviations in a more precise one?

To summarize, the above experimental tests of local realism falsified this idea
(so cherished by, e.g., Einstein), and in that way solved the Einstein–Bohr debate
(almost) definitely in favor of Bohr. The existence in nature of entangled states was
experimentally confirmed. Much later, it was experimentally proved that entan-
glement can be utilized directly in quantum cryptography (the protocol of Ekert,
1991). Quantum cryptography is now already within the realm of applied physics.
Entanglement is essential in the process of quantum teleportation, and in various
quantum communication and quantum information schemes. The very topic of
entanglement leads to such surprises like the ultra-non-classical Greenbergeret al.
(1989) correlations. But in the beginning of all that were the ideas of Bell, and the
early experiments. They showed with new strength, how strange is the quantum
world, and that this strangeness can be experimentally observed. Now we begin to
benefit from that.

2. SUMMARY

Further down in the paper we shall present a brief introduction to the Bell
theorem, which will lead us to the simplest. Bell inequality (as far as the derivation
is concerned), which is the aforementioned CHSH one. Next we shall give a
brief introduction to the surprising features of the three-particle-Greenberger–
Horne–Zeilinger (Greenbergeret al., 1989) (GHZ) states. Finally we shall present
a new method of analysis of the GHZ correlations, which is based on a numerical
approach, which is effectively equivalent to the full set of Bell inequalities for
correlation functions for the given problem.5 Such a set is known in the case of

5 The set of Bell inequalities is “full” when it constitutes the sufficient and necessary condition for
the existence of local realistic model for the given process, for the given number of local settings for
each of the observers.
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three qubits in the case of experiments involving two alternative settings for each
observer (Weinfurter anḋZukowski, 2001; Werner and Wolf, 2001;Żukowski and
Brukner, 2002). In this case the full set can be expressed in the form of a single
generalized inequality, and therefore it is easy to analyze. The full set of inequalities
for three settings per observer can be in principle found using the method presented
by Pitovsky and Svozil (2001). However, one can expect an enormous number of
them.

The aim of our numerical approach is to answer the following question: Do
additional possible local settings lead, in the case of three-qubit GHZ states, to
more pronounced violations of local realism (measured by the resistance of the
quantum nature of the correlations to “white” noise admixtures)?

3. BELL THEOREM

Before the advent of Bell (1964) theorem, despite Einstein’s doubts, the ques-
tion of the existence of a more detailed description of individual events in the mi-
croworld than the probabilistic one provided by quantum mechanics was treated
as interesting, however not falsifiable, and therefore as irrelevant as the question
of “how many angels fit on the tip of the needle.” In early sixties, Bell (1966)6

conjectured that if there is any conflict between quantum mechanics and there-
alistic theories,7 it may be confined tolocal8 versions of such theories. This led
him to formulate his famous theorem of profound scientific and philosophical
consequences.

3.1. Bell Inequality

Consider pairs of particles (say, photons) simultaneously emitted in well-
defined opposite directions. After some time the photons arrive at two very distant
measuring devices A and B operated by two characters: Alice and Bob. Their
apparatuses have a knob which specifies, which dichotomic (i.e., two-valued, yes–
no, 0–1, one bit) observable they actually measure.9 One can assign to the two
possible results the numbers+1 (for yes, bit value one) and−1 (for no, bit value
nil).10 Alice and Bob are at any time (also in a “delayed choice” mode, after an

6 Bell (1966) was written before Bell (1964).
7 Realism, the cornerstone of classical physics, is a view that any physical system (i.e., also a subsystem
of a compound system) carries full information (deterministic or probabilistic) on results ofall
possible experiments that can be performed upon it.

8 A theory is local if it assumes that information cannot travel faster than light.
9 For example for a device consisting of a polarizing beam splitter and two detectors behind its
outputs, this knob would specify the orientation of the polarizer; if the device is a Mach–Zehnder
interferometer (plus two detectors at the two exits) the knob would set the phase shift, etc. The photon
may be registered only behind one or the other output ports of such devices.

10We assume perfect situation in which the detectors never fail to register a photon.
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emission)both freeto independently choose the observables (knob settings) that
they want to measure. Their choice is absolutely independent of the workings of
the source, and can be done at any time.

Let us assume that each photon pair carries full information (deterministic or
probabilistic) on the values of the results of all possible experiments that can be
performed on it11 (realism). Also, by locality, choices made by them which are
simultaneous in certain reference frame cannot influence each other (in Alice’s
region of space-time, which contains the measurement event, there is no informa-
tion whatsoever available on Bobs choice, and vice versa); the choice made on one
side cannot influence the results on the other side.

For simplicity, assume that Alice chooses to measure either observableÂ1

or Â2, and Bob eitherB̂1 or B̂2. Let us denote the hypothetical results that they
may get for thej -the pair byAj

1 andAj
2, for Alices two possible choices, andB j

1

and B j
1 , for Bobs. The numerical values of these results (+1 or−1) are defined

by the two eigenvalues of the observables. Since, always either
∣∣B j

1 − B j
2

∣∣ = 2

and
∣∣B j

1 + B j
2

∣∣ = 0, or
∣∣B j

1 − B j
2

∣∣ = 0 and
∣∣B j

1 + B j
2

∣∣ = 2, the following relation
holds

Aj
1B j

1 + Aj
1B j

2 + Aj
2B j

1 − Aj
2B j

2 = Aj
1

(
B j

1 + B j
2

)+ Aj
2

(
B j

1 − B j
2

) = ±2. (1)

Imagine now thatN pairs of photons to are emitted pair by pair (N is suffi-
ciently large,

√
1/N ¿ 1). The average value of the products of the local values

for a joint test (often called the Bell correlation function) during which, for all
photon pairs, only one pair of observables, sayÂn and B̂m, is chosen by the local
observers is given by

E(An, Bm) = 1

N

j=N∑
j=1

Aj
n B j

m, (2)

wheren = 1, 2, andm= 1, 2. The relation implies that for the fourpossible
choices of pairs of observables the following “Bell” inequality must be satisfied

−2≤ E(A1, B1)+ E(A1, B2) (3)

+E(A2, B1)− E(a2, B2) ≤ 2 (4)

(Clauseret al., 1969). In the actual experiment only in part of the cases (say,
approximately 1/4-th) the given pair of observables would be measured, however,
if N is very large, the correlation function obtained on a randomly preselected
subensemble12 of emissions cannot differ too much from the one that would have

11Note that in the present discussion, only this idea openly goes beyond “what is speakable” in quantum
mechanics.

12The submersible is selected by the choice of observables made by Alice and Bobbeforethe actual
measurements.
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been obtained for the full ensemble13 Therefore for the values of theactually
chosen measurements the inequality also must hold.14

3.2. Bell Theorem Without Inequalities: Three Entangled Particles or More

If there areN > 2 maximally entangled quantum systems (qubits), measure-
ments on which are performed inN spatially separated regions byN independent
observers, the correlations obtained in such experiment violate bounds imposed by
local realism much stronger than in the case of two particles. Proofs of such viola-
tions can be limited to the experiments for which the perfect EPR-type correlations
occur. That is, the EPR notion of elements of reality becomes self-contradictory.

As the simplest example, take a GHZ (Greenbergeret al., 1989) state of
N = 3 particles (Fig. 1):

|ψ(3) >= 1√
2

(|a〉|b〉|c〉 + |a′〉|b′〉|c′〉), (5)

where〈x|x′〉 = 0(x = a, b, c, and kets denoted by one letter pertain to one of
the particles). The observers, Alice, Bob, and Cecil, measure the observables:
Â(φA), B̂(φB), Ĉ(φC), defined by

X̂(φX) = |+, φX〉〈+, φX| − |−, φX〉〈−, φX| (6)

and

|±, φX〉 = 1√
2

(±i |x′〉 + exp(iφX)|x〉). (7)

where X = A, B, C. The quantum prediction for the expectation value of the
product of the three local observables is given by

E(φA, φB, φc) =< ψ |Â(φA)B̂(φB)Ĉ(φC)|ψ >= sin(φA + φB + φc). (8)

Therefore, ifφA + φB + φc = π/2+ kπ , quantum mechanics predicts perfect cor-
relations. For example, forφA = π/2,φB = 0, andφc = 0, whatever may be the
results of local measurements of the observables, for say the particles belonging
to thei -th triple represented by the quantum state|ψ(3)〉, they have to satisfy

Ai (π/2)Bi (0)Ci (0)= 1, (9)

whereXi (φ), X = A, B, orC is the value of a local measurement of the observable
X̂(φ) thatwould have beenobtained for thei -th particle triple if the setting of the
measuring device isφ. By locality Xi (φ) depends solely on the local parameter. The

13With N →∞ the difference must approach zero, otherwise we would suspect that these two mag-
nitudes pertain to two different physical processes (i.e., a systematic error must be involved).

14The presented Bell-type argument avoids any explicit introduction of hidden variables. Alllocal
hidden variable theories satisfy Bell inequalities.
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Equation (9) indicates that we can predict with certainty the result of measuring
the observable pertaining to one of the particles (sayc) by choosing to measure
suitable observables for the other two. Hence the valueXi (φ) are EPR elements
of reality.

However, if the local apparatus settings are different, onewould have had,
e.g.

Ai (0)Bi (0)Ci (π/2) = 1, (10)

Ai (0)Bi (π/2)Ci (0) = 1, (11)

Ai (π/2)Bi (π/2)Ci (π/2) = −1. (12)

SinceXi (φ)± 1, if one multiplies side by side the Eqs. (9–12), the result is

Ai (π/2)Bi (π/2)Ci (π/2)= +1, (13)

which contradicts (12). Thus the EPR elements of reality program break down.
We have a “Bell theorem without inequalities” (Greenbergeret al., 1989).

4. MORE THAN TWO SETTINGS PER EACH OBSERVER

The beautiful argument of the GHZ paper cannot be directly applied to ex-
perimental results. This is just like in the case of the original Bell inequality. The
reason is exactly the same. One cannot observe perfect correlations in the lab.
Some noise is inevitable. Therefore one must use Bell inequalities of a new type
(for the first ones, see Mermin, 1990). In the standard approach to multiqubit Bell
inequalities one assumes that each observer measures two randomly chosen di-
chotomic observables. The results of measurements are used to compute the set of
correlations functions that one needs to check if there is a violation of certain Bell
inequalities.

A possible extension to this scenario is that each observer measures more than
two local observables. Obviously it cannot yield worse violation of local realism
than in the standard case. However, it is difficult to find analytically optimal Bell
inequalities for more than two local observables and one must resort to numerical
methods.

There is a computationally efficient method of finding the optimal viola-
tion of local realism for arbitrary number of observers and measured observables
(Żukowskiel al., 1999). It is based on well-known linear optimization algorithms.
The greatest advantage of this method is that it gives necessary and sufficient
conditions for the existence of local realistic description. The method has been
successfully applied to the problem of violation of local realism for entangled
pairs of q-Nits (N = 2, 3,. . . , 16) and the numerical results of Kaszlikowskiet al.
(2000) have been later confirmed analytically by Kaszlikowskiet al. (2001) and
Collins et al. (2001).
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In this paper we show an application of the mentioned numerical method to
the GHZ correlations, i.e., to the maximally entangled state of three qubits.

5. DESCRIPTION OF THE METHOD

Let us consider the GHZ state of three qubits

|ψ〉 = 1√
2

(|0〉1|0〉2|0〉3+ |1〉1|1〉2|1〉3), (14)

where|i 〉 j is thei -th state of thej -th qubit.
Each observer measures the dichotomic observableEn · Eσ , wheren = a, b, c

(a for the first observer,b for the second one, andc for the third one),En is a
unit vector characterizing the observable which is measured by observern and Eσ
is a vector the components of which are standard Pauli matrices. This family of
observablesEn · Eσ covers all possible dichotomic observables for a qubit system.

The probability of obtaining the resultm= ±1 for the observera, when
measuring the observable characterized by the vectorEa, the resultl = ±1 for the
observerb, when measuring the observable characterized by the vectorEb and the
resultk = ±1 for the observerc, when measuring the observable characterized by
the vectorEc is equal to

PQM(m, l , k; Ea, Eb, Ec) = 1

8
(1+mla3b3+mka3c3+ lkb3c3

+mlk
3∑

r, p,s=1

Mrpsar bpcs), (15)

wherear , bp, cs are components of vectorsEa, Eb, Ec and where nonzero elements of
the tensorMrps areM111= 1, M122= −1, M212= −1, M221= −1. In spherical
coordinates vectorsEa, Eb, Ec read

En = (cosφn sinθn, sinφn sinθn, cosθn), (16)

where 0≤ θn ≤ π and 0≤ φn ≤ 2π . From now on we will be considering only the
measurement of the observables characterized by vectors with the zero third com-
ponent, which is equivalent to puttingθn = π/2. Thus, the formula (15) acquires
simpler form (we have replacedφa, φb, φc by α, β, γ , respectively)

PQM(m, l , k;α, β, γ ) = 1

8
(1+mlk

3∑
r, p,s=1

Mrpsar bpcs) (17)

in which only the term responsible for three qubit correlations is present.
The probabilities of obtaining one of the results in the local stations reveal no

dependence on the local parameters,PQM(l |α) = PQM(m|β) = PQM(n|γ ) = 1
2.
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Similarly, the probabilities describing two-qubit correlations do not reveal de-
pendence on the local parameters, i.e.,PQM(l , m | α, β) = PQM(m, n | β, γ ) =
PQM(l , n | α, γ ) = 1

4.
If there is a white noise in the quantum channel distributing qubits to the

observers, we must replace the above quantum probabilities (17) by

PV
QM(m, l , k|α, β, γ ) = 1

8
(1+mlkV

3∑
r, p,s=1

Mrpsar bpcs), (18)

where 1− V(0≤ V ≤ 1) is the amount of noise in the channel. The parameterV
is often called “visibility.”

Let us define the correlation functionEV
QM(α, β, γ ) as

EV
QM(α, β, γ ) =

1∑
m,l ,k=−1

mlk P(m, l , k;α, β, γ )V
3∑

r, p,s=1

Mrpsar bpcs).

It equalsV cos(α + β + γ ). As we see in the considered experiment, there is
no single and two-qubit interference and the correlation function, which depends
only on three-particle correlations, contains all information about correlations in
the system.

In the experiment observera chooses betweenNa settings of the measuring
apparatusα1, . . . , αNa , observerb betweenNb settingsβ1, . . . , βNb and, finally,
observerc betweenNc settingsγ1, . . . , γNc. For each triple of local settings we cal-
culate the quantum correlation functionEV

QM(αi , β j , γk) wherei = 1, . . . , Na, j =
1, . . . , Nb, k = 1, . . . , Nc. Thus we have a “tensor”Qi jk (V) = EV

QM(αi , β j , γk)
of quantum predictions.

Within the local hidden variables formalism the correlation function must
have the following structure:

EL HV (αi , β j , γk) =
∫

dρ(λ)A(αi , λ)B(β j , λ)C(γk, λ), (19)

where for dichotomic measurements

A(αi , λ) = ±1,

B(β j , λ) = ±1,

C(γk, λ) = ±1, (20)

and they represent the values of local measurements predetermined by the local
hidden variables, denoted byλ, for the specified local settings. This expression is
an average over a certain LHV distributionρ(λ) of certain factorizable “tensors,”
namely those with elements given byTi jk (λ) = A(αi , λ)B(β j , λ)C(γk, λ). Since
the only possible values of (A(αi , λ), B(β j , λ), andC(γk, λ) are±1, there are only
2Na different sequences of the values of (A(α1, λ), . . . , A(αNa , λ)), 2Nb different
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sequences of (B(β1, λ), . . . , B(βNb, λ)), 2Nc different sequences of (C(γ1, λ), . . . ,
C(γNc, λ)), and consequently they form only 2Na+Nb+Nc tensorsTi jk (λ).

Therefore the structure of LHV models ofEL HV (αi , β j , γk) reduces to dis-
crete probabilistic models involving the average of all the 2Na+Nb+Nc tensors
Ti jk (λ). In other words, the local hidden variables can be replaced, without any loss
of generality, by a certain triple of variablesl , m, n that have integer values respec-
tively from 1, . . . , 2Na , 1, . . . , 2Nb, 1, . . . , 2Nc. To eachl we ascribe one possible
sequence of the possible values ofA(α, l ), denoted from now on byA(α, l ), simi-
larly we replaceB(β j , λ) by B(β j , m) andC(γk, λ) byC(γk, n). With this notation
the possible LHV models of the correlation functionEL HV (αi , β j , γk) acquire the
following simple form:

EL HV (αi , β j , γk)
2Na∑
l=1

2Nb∑
m=1

2Nc∑
n=1

plmnA(αi , l )B(β j , m)C(γk, n), (21)

with, of course, the probabilities satisfyingplmn ≥ 0 and

2Na∑
l=1

2Nb∑
m=1

2Nc∑
n=1

plmn = 1.

Please note that not all tensorsTi jk (lmn) are different (in fact only half of them
differ).

The conditions for local hidden variables to reproduce the quantum prediction
with a visibility V can be simplified to the problem of maximizing a parameterV
for which exists a set of 2Na+Nb+Nc−1 probabilitiesplmn, such that

2Na∑
l=1

2Nb∑
m=1

2Nc−1∑
n=1

p̃lmnA(Eai , l )B(Ebj , m)C(Ebk, n) = Qi jk (V). (22)

Because, for the given local settings (22) imposes linear constraints on the proba-
bilities and the visibility, and we are looking for the maximalV , the problem can
be solved by means of linear programming methods of optimization.

We want to find such local settings for which this maximalV reaches
its minimum. This is due to the fact that in such a case the noise admixture,
1− V , is maximal. In such a case the nonclassical matrix of quantum
correlations reveals the strongest resistance with respect to white noise admix-
tures. This can be treated as a measure of the “strength” of violation of local
realism.

The set of linear equations (22) constitute a certain region in aD =
2Na+Nb+Nc−1+ 1 dimensional real space—2Na+Nb+Nc−1 probabilities plus the vis-
ibility. The border of the region consists of hyperplanes each defined by one of
the equations belonging to (22), thus, if the equations do not contradict each other,
the region is a convex set with a certain number of vertices. On this convex set we
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define a linear function (cost function)f (p1, . . . , p2Na + Nb + Nc−1, V) = V ,
and we seek its maximum.

The fundamental theorem of linear programming states thatthe cost function
reaches its maximum at one of the vertices. Hence, it suffices to find numerical
values of the cost function calculated at the vertices and then pick up the largest
one. Of course, the algorithmic implementation of this simple idea is not so easy,
for we must have a method of finding the vertices, for which the value of the
function continually increases, so that the program reaches the optimal solution
in the least possible number of steps. Calculating the value of the cost function at
every vertex would take too much time, as there may be too many of them.

There are lots of excellent algorithms which solve the above optimization
problem. Here we have used the algorithm invented the Gondzio (1995) and imple-
mented in the commercial code HOPDM 2.30 (Higher Order Primal-Dual Method)
written in C programming language.

However, finding the maximal visibility for the given local settings of the
measuring apparatus is not enough. We should remember that our main goal is
to find such local setting for which the threshold visibility is the lowest one.
The maximal visibilityVmax returned by the HOPDM 2.30 procedure depends
on the local settings entering right-hand side of (22). Thus, returnedVmax can be
treated as the many variable function, which depends onNa + Nb + Nc angles
in the coplanar case and two times more in the noncoplanar one, i.e.,Vmax=
Vmax(Ea1, . . . , EaNa , Eb1, . . . , EbNb).

Hence, we should also have a numerical procedure which finds the minimum
of Vmax. Because we do not know much about the structure ofVmax as a function
of the local settings, the only reasonable method of finding theVmax minimum is
the Downhill Simplex Method (DSM) (Nelder and Mead, 1965). The way it works
toward finding the extremum is the following. If the dimension of the domain of
a function isDim, the DSM randomly generatesDim+ 1 points.

This way it creates a starting simplex with vertices being the points. Then it
calculates the value of a function at the vertices and starts exploring the space by
stretching and contracting the simplex. In every step if it finds a vertex where the
value of the function is lower than in others, it “goes” in this direction.

We have checked four cases:Na = Nb = Nc = 2, 3, 4, 5, with the result that
the threshold visibility admitting local hidden variable model isV = 1

2. This result
is in concurrence with the threshold visibility obtained earlier in Mermin (1990)
with the usage of appropriate Bell inequalities.

Because of the complexity of the space being the domain of theVmax func-
tion to find a global minimum for the caseNa = Nb = Nc = 2, 3 we have run the
amoeba procedure 30 times with varied starting points. ForNa = Nb = Nc = 4,
we calculatedVmax on 9000 randomly chosen sets of the local settings whereas
in the caseNa = Nb = Nc = 5 we have calculatedVmax on the following
set of the local settings:α1 = 0,α2 = π/8,α3 = π/4,α4 = 3π/8,α5 = π/2,
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β1 = γ1 = −π/4, β2 = γ2 = −π/8, β3 = γ3 = 0, β4 = γ4 = −π/8, β5 = γ5 =
−π/4. In both cases the only reason for abandoning the DSM method was the
exploding computational time.

An interesting feature of the results is that the threshold visibilityVmax= 1
2

is always achieved for such settings of the measuring apparatus which include as a
subset the settings giving maximal violation of the inequalities. Similar result was
obtained for two maximally entangled qubit, also using the numerical method, by
Żukowskiet al. (1999) and Massaret al. (2002).

6. CONCLUSIONS

The presented numerical approach to the three-qubit GHZ correlations gives
the sufficient and necessary conditions for the existence of local hidden variables
for the given experimental situation, i.e., for the fixed number of positions of the
measuring apparatus at each side of the experiment.

For the cases ofNa = Nb = Nc = 2, 3, we have found such numerical values
of the local settings for which the critical visibility admitting local hidden variables
has the lowest possible value. Up to the possibility that the DSM procedure has
not succeeded in finding the global minimum ofVmax the visibility V = 1

2 is the
ultimate limit drawing the borderline between local hidden variables and quantum
mechanics for these cases, i.e., for 2 and 3 settings of the measuring apparatus at
each side of the experiment.

For Na = Nb = Nc = 4 the critical visibility returned by the program for
every random choice of local settings has been always higher than1

2.
In the last case, i.e., forNa = Nb = Nc = 5, we have found the threshold

value for local settings including as a subset setting giving maximal violation of
a three-particle Bell-type inequality with the result againVmax= 1

2 (the DSM has
not been used).

Unfortunately, because of the computer time and memory limitations, we
could not check more settings of the measuring apparatus. Nevertheless, one could
possibly conjecture that increasing the number of settings will not lead to a critical
visibility lower thanV = 1

2. This is quite surprising especially when one considers
the fact that already three settings per observation site lower the critical visibility
for four GHZ qubits or more (̇Zukowski and Kaszlikowski, 1997).

The important aspect of the presented analysis of the GHZ correlations is that
the numerical approach can be directly applied to measurement data.
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